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Thermodynamics of phase equilibrium in nonuniform fields

V. S. Vorob’ev* and S. P. Malyshenko†

Institute for High Temperatures of Russian Academy of Science, 127412, Moscow, Russia
~Received 9 April 1997!

We obtain conditions of phase equilibrium of a substance in a nonuniform potential field of forces. If the
force per mass unit is phase dependent, the field may induce a shift of phase equilibrium. In this case, chemical
potentials of the substance do not coincide at the phase boundary with equal temperatures and pressures for
each phase. The equality condition at the phase boundary in the presence of the field for the full chemical
potentials of the phases, including the additional field component, can be reduced to the equality condition of
the chemical potentials under different pressures for each phase. Thus the field-induced phase equilibrium
becomes impossible for a given geometry, and the system has to change its phase abruptly when one of the
phases reaches its spinodal state. An example of such a transition is the case of a liquid current-carrying
conductor in its own magnetic field rapidly turning to a dispersion state~drops in vapor!. Similar phenomena
can occur at the final stage of electrical explosion of conductors. We also show that for a liquid dielectric in a
nonuniform external electric field the thermodynamical equilibrium state is liquid with vapor bubbles, the latter
being localized into the domain of the higher value of the field.@S1063-651X~97!05510-4#

PACS number~s!: 64.10.1h, 05.70.Fh, 64.70.Fx, 64.90.1b
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I. INTRODUCTION

As is known, strong external fields penetrating inside
body radically affect its thermodynamical properties. E
amples of general thermodynamical relations for the mat
field system are given in the monographs@1,2#. An elegant
sample of the application of these relations is provided in@3#,
where the problem of the condensation of an electrica
charged drop is considered. At the same time the questio
strong field influence on the thermodynamics of phase e
librium is not quite clear, though the issue is practically im
portant in connection with the research of substance c
pression in a setup that uses pinch effect, electrical explo
of conductors, and a number of other applied problems.

Recently a number of works were published~see, for ex-
ample,@4–6#! in which the expected effects of dealing wi
the shift of the phase equilibrium in a high density curre
carrying conductor in the presence of an azimuthal magn
field were discussed. Nevertheless the self-consistent s
tion of the problem of external field influence on the therm
dynamics of phase equilibrium is absent.

In the present study we consider the effect of a nonu
form potential field of forces on thermodynamics of pha
equilibrium. Assume the substance is uniform on the d
tances on the order of the correlation fluctuation density
dius. The appropriate restriction on the force value will
given below.

First we consider a single-phase state. The expression
the full thermodynamical potential of the matter-field syste
is written as a functional of substance density and field
forces. Minimization of this functional leads to two cond
tions. The first one is the constancy of the full chemic
potential throughout the system. The second one is the
dition of the mechanical equilibrium of the matter-field sy
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tem, in which the pressure gradient is balanced by the ex
nal force. As is shown, the field not only leads to t
formation of a pressure profile but it also creates an ad
tional component in the full matter-field chemical potent
that depends on the external force work. The thermodyna
cal relations and the equation of state without the field
valid for both local values of substance chemical poten
and the density-pressure dependence at every point.

We also produce the corresponding functional for a tw
phase system. Its minimization gives conditions of the ph
equilibrium. They reduce to equality of the full chemic
potentials of phases at the phase boundary. The part o
potential associated with the external field work is added
or subtracted from the substance chemical potential. If
forces acting per mass unit for each phase differ then th
field potentials differ too. It means that the substance che
cal potentials at the phase boundary with identical tempe
tures and pressures are not equal to each other. The equ
of the full chemical potentials of the phases can be prese
as the equality of the substance chemical potentials of
phases with different pressures. For example, the shif
phase equilibrium arises when either a current-carrying
uid conductor is in its own magnetic field or a liquid diele
tric is an electrical field. However, in a field of gravitatio
this effect is absent.

The possibility of the equality of the substance chemi
potentials with identical temperatures and different pressu
is analyzed below qualitatively and also on the basis of
van der Waals equation. As shown for fields caused
forces of compression in the substance, densities and p
sures of the coexisting phases in the presence of the field
higher than those without it. Under thermodynamical eq
librium, the phase with lower density is in the state th
without field is metastable~supersaturated vapor!. In the case
of fields creating forces of expansion in the matter, densi
and pressures of the phases at the phase boundary are
than those without the field. Moreover, the phase with hig
density is in the state which corresponds to the metast
3959 © 1997 The American Physical Society
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3960 56V. S. VOROB’EV AND S. P. MALYSHENKO
liquid branch of states~superheated liquid!. In both cases,
there are limiting values of the potential of the volume de
sity forces when one of the phases reaches its spinodal p
The phase equilibrium in a given geometry and field is ma
impossible and the system has to change its state. So
have a field-induced phase transition.

When a high density current-carrying conductor is in
own magnetic field, the only possible state after transition
a dispersion mixture of liquid drops in vapor. We estima
the drop size and expansion speed of this mixture. We
sume that such a transition can be the direct reason for
sharp increase of the conductor radius and the resistan
the final stage of electrical explosion of conductors tak
place in so-called fast regimes@7–9#.

The phase equilibrium of a liquid dielectric in the pre
ence of a nonuniform electrical external field has also b
given consideration. In this case there is vapor bubble
mation in the domain of higher values of the electrical fie

II. PRELIMINARY REMARKS

Consider a substance at constant temperature in a vo
V in the presence of some nonuniform potential field
forces f~r !. Here f~r ! is the force per unit volume or th
volume density of the force,r is the position. The force on
the element of volume evidently is equal tofdV.

As is known, the matter will be at rest in a constant fie
of forces if

“P5f, ~1!

where P is the pressure of substance. The force per u
volume is balanced by the pressure gradient. The field
forces can be presented as the gradient of a scalar func
The pressure of the substance in equilibrium with the field
forces equals the potential of the field of volume dens
forces taken with inverse sign. Our observations for
fields that have the potential of the volume density of forc
follow.

Direct integration of Eq.~1! gives the pressure distribu
tion throughout the system,

P~r !1P~r !5PI , ~2!

wherePI is the substance pressure at the zero field point,
P~r ! is the potential of the volume density forces which
determined from the expression

P~r !52E
0

r
f•du. ~3!

Generally, to find the pressure distribution one should
the equation of state and integrate it taking into account
the forcef can depend on the substance state.

We shall restrict our consideration to the cases when
fields are not so intensive as to allow the nonuniformity to
essential at the distance on the order of the correlation d
sity radius. In this case the equation of state obtained with
field will be valid at every point. Let us find the requireme
for the value of force associated with this assumption. T
typical scale of the density variation in uniform matter
connected with its fluctuations
-
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A^Dr2&5rAkTr/2r~]P/]r!Tm, ~4!

where^Dr2& is the mean square of the density fluctuationr
is density,m is mass, andT is temperature. The typical den
sity variation associated with the external force can be w
ten as

Dr5S ]r

]PD
T

DP5S ]r

]PD
T

f r c , ~5!

wherer c is the correlation radius of density fluctuations. W
can state that

r c;r 0AP/2r~]P/]r!T, ~6!

where r 0;(m/r)1/3 is the mean interparticle distance. R
quiring Dr!A^Dr2&, we obtain

2rS ]P

]r D
T
S r

mD 1/3AkTr

mP
@ f . ~7!

When inequality~7! is valid we may consider that grad
ent terms in the equation of state are of no significance.

Besides the chemical potential of the matter-field syst
m I in equilibrium must be constant throughout the syst
@1,2#. It means that its full differential is equal to zero,

rdm I5rdm2f•du50, ~8!

wherem is the chemical potential unit mass of the substan
without field, anddu is the vector of infinitesimal displace
ment. The first term in Eq.~8! is the chemical potentia
change of the substance volume element. The second o
the infinitesimal work of the external force. The gradie
terms are absent in Eq.~8! because the substance is unifor
on the distance in the order of the correlation radius of d
sity fluctuations. Integrating Eq.~10! by u from the point of
the zero field, we obtain

m~r !1w~r !5m I , ~9!

where n51/r is the specific volume,m I is the substance
chemical potential at the pointr 50 where the field is equa
to zero, and the substance chemical potential coincides
the full chemical potential of the matter-field system.w(r ) is
the potential of the mass density forces which is equal to

w~r !52E
0

r
nf•du. ~10!

It should be noted that the full chemical potential is det
mined with a precision of an arbitrary constant.

The line integral in Eq.~10! does not depend on the pa
of integration due to the potentiality of the force fiel
Change in the substance chemical potential is associ
with the external field work per unit mass.

Replacing f•du with dP from Eq. ~1! in Eq. ~10! we
obtain the usual thermodynamical formula that connects
substance chemical potentials with different pressures.

m„P~r !,T…5m~PI ,T!2E
P~r !

PI

n dP. ~11!
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56 3961THERMODYNAMICS OF PHASE EQUILIBRIUM IN . . .
It should be noted that the conditions of equilibrium~1!
and ~9! can be obtained from minimality condition of som
functional. Consider the functionalC that is connected with
a full thermodynamical potential of the system by the re
tion C5F2lm, wherem is the substance mass,

C5E
V
r dV@m~r !1w~r !2l#. ~12!

TheC function has a minimum in the state of equilibrium
its first variation is equal to zero. Ifdr is the arbitrary dis-
placement of substance element in Eq.~13!, then the first
variation equals zero, when

dr

dr
@m~r !1w~r !2l#1rFdm

dr
2nfG50. ~13!

Terms in both square brackets in Eq.~13! must be equal
to zero. The equality of the first term in the square brack
to zero gives the condition~9! with l5m I . The equality for
the second term in the square brackets withdm5ndP taken
into account leads to the mechanical equilibrium condition
substance in the field~1!.

Consider specific examples of fields and forces. The fo
can depend on the thermodynamical functions of matter.
example, in the case of a centrally symmetric field of grav
the force is given by

f52gr
m~r !

r 3 r , ~14!

whereg is the gravity constant. The value

m~r !54pE
0

r

rr 2dr ~15!

is the substance mass confined in a spherical volume o
dius r .

As in @1# the force per unit volume in a liquid dielectri
can be written

f5“F E2

8p S r
]«

]r D
T
G2

E2

8p
“«, ~16!

whereE is the strength of electric field and« is the dielectric
constant.

The force acting on a nonmagnetic current-carrying m
terial in a magnetic field has the form

f5
1

c
@ j ,H#, ~17!

wherec is the light speed,j is the current density, andH is
the magnetic field strength.

We emphasize that volume density field of forces in
arbitrary magnetic field may not be potential. It will be p
tential if the following condition is valid:

rot f5
1

c
rot@ j ,H#5

1

4p
rot@rot H,H#50. ~18!
-
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The last expression leads to some restrictions of a magn
field configuration.

III. PECULIARITIES OF THERMODYNAMIC
EQUILIBRIUM OF CURRENT-CARRYING CONDUCTORS

AND LIQUID DIELECTRICS

Depending on the sign of the work performed by the fie
force, we consider two cases. Iff•du,0, then the value
P(r ) is positive. The substance pressure is higher in
mains where the field is lower. According to Eq.~9!, the
external field work is added to the substance chemical po
tial and the valuem I.m. We have such a situation for
cylindrical current-carrying conductor in its own magne
field. The current creates an azimuthal magnetic field. T
conductor is compressed by the ponderomotive forcef 5
2 jH /c. The zero field point is located at the axis of th
conductor. In this case the distributions of the substa
chemical potential and substance pressure have the form

m~PI !5m„P~r !…1
1

c E
0

r

n jH dr , ~19!

PI5P~r !1
1

c E
0

r

jH dr , ~20!

wherem I and PI are the values of the substance chemi
potential and pressure at the axis of the conductor. The
chemical potential in this case is equal to the substa
chemical potential at the conductor axis. It follows from Eq
~19! and ~20! that the valuesm I and PI are maximal at the
zero field point.

Let us give a graphical interpretation of the equilibriu
conditions ~19! and ~20!. The typical dependence of sub
stance chemical potential on pressure under subcritical t
perature is drawn in Figs. 1~a! and 1~b!. Different parts of
this dependence correspond to different states. The bra
DS is gas,SE is supercooled gas,SA is liquid, FS is super-
heated liquid,FE corresponds to the absolutely unstab
states. The pointS is the point of phase equilibrium withou
the field at the planar interface. The corresponding value
the pressure and chemical potential are designated asPs and
ms .

The states of liquid conductor correspond to states ly
at the liquid branch of this dependence. The straight linem I

gives the full chemical potential value which is consta
throughout the system. This line intersects the liquid bran
SAat the pointA with pressurePI . This state corresponds t
the zero field point which lies at the conductor axis. T
point B corresponds to the state of the conductor at the
tancer from the axis with the pressureP5PI2P and with
the chemical potentialm5m I2w.

If f•du.0, then the valueP(r ) is negative. The sub-
stance pressure is higher in domains where the field is hig
too. The external field work is subtracted from the substa
chemical potential, so that the valuem I,m. Such a situation
can be realized, for example, in a liquid dielectric in t
presence of an external electric field at a distance from e
trodes. Consider a long cylindrical capacitor with extern
and inner radii equal toR and r 0 . If the liquid dielectric is
localized within the cylindrical capacitor, then the distrib
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3962 56V. S. VOROB’EV AND S. P. MALYSHENKO
tions of the substance chemical potential and substance
sure at a distance from electrodes, following@2#, are

m~PI !5m~r !2
E2

8p S ]«

]r D
T

, ~21!

PI5P~r !2
rE2

8p S ]«

]r D
T

, ~22!

Herem I andPI are values of the substance chemical pot
tial and pressure at the zero field point. It should be no
that near the electrodes the sign of force changes. There
force at the boundary of a charged metallic body penetra
inside a dielectric liquid. This force moves apart the capa
tor plates and expands the liquid. As a result, the pres
drop appears at the boundary between liquid and cha
metallic body. This pressure drop can be written as@2,10#

PI5P~r 0!1
E2~r 0!

8p
«~«21!, ~23!

FIG. 1. ~a! relates to the case of negative values of parameteP,
~b! to the positive values of this parameter. Substance chem
potential dependence on pressure at the constant temperature
values of equilibrium pressurePs and substance chemical potenti
ms are marked as dotted lines. The values of pressures and che
potentials corresponding to the equilibrium in the presence of
ternal field are marked as solid lines. The limit values of the pr
sure and the substance chemical potentials are marked as sho
ted lines.
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-
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whereE(r 0) is the strength of the electric field at the surfa
of the inner electrode. The electrostriction force is equa
zero at this surface@10#. So the liquid pressure has a minim
value at the electrode surface due to the expansion of
liquid by electrical forces. As the volume element of liqu
moves away from the electrode the electrostriction force fi
increases and then decreases. The latter is associated w
fall of the strength of the electric field as the point mov
away from the electrode. So we have nonuniform press
distribution throughout the liquid due to the presence of
electrical field. It is significant that the minimal value pre
sure of liquid can be realized via an electrode with a hig
value of electric field strength. The zero field point can
located somewhere outside the capacitor. The dependen
the chemical potential on pressure for this case is show
Fig. 1~b!. The pointr 0 corresponds to the liquid state at th
surface of the electrode with the higher value of the elec
field strength. The pointB corresponds to the liquid stat
inside the capacitor at the point lying at a distance from
electrode. The zero field pointC5S coincides with the equi-
librium one and the value of the substance chemical poten
at this point ism I5ms.

IV. PHASE EQUILIBRIUM IN THE PRESENCE OF FIELD

Let us assume that the matter breaks down into t
phases. Phase 1 occupies the inner volumeV1 . Phase 2 oc-
cupies the external volumeV2 . The location of the zero field
point depends on the problem being considered. This p
can at times be localized into the inner domain of phas
and at other times at the periphery domain of phase 2 or e
outside volumesV1 andV2 . The phase boundary is the su
face P(r1). The functionalC for the two-phase system ha
the form

C5E
V1

r1dV@m1~r !1w1~r !2l1#1E
V2

r2dV8@m2~r 8!

1w2~r 8!2l2#1sS, ~24!

wheres is surface tension,S is interface. The value

w2~r 8!5w2~r1!2E
r1

r8
n2f2•du ~25!

is the potential at the pointr 8 of phase 2. Minimization of
the functional~24! with respect todr and dr 8 leads to the
conditions of equilibrium~1! and~10! for each phase. More
over, the valuel1 is equal tol15m1(0). Since the full
chemical potentials of each phase are constant, we w
down the thermodynamical potential of the system

F5m1m1~0!1m2@m2~r1!1w2~r1!#1sS, ~26!

wherem1 , m2 are phase masses. When minimizing Eq.~20!
with respect tom1 provided there is constancy of the tot
mass of both phases (dm152dm2), we obtain the condition
of equilibrium of the two-phase system in the form

m2~r1!1w2~r1!5m1~r1!1w1~r1!1
]~sS!

]m1
. ~27!
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56 3963THERMODYNAMICS OF PHASE EQUILIBRIUM IN . . .
Assuming thats does not depend onm1 , after usual trans-
formations the surface term in Eq.~27! can be rewritten as

sS ]S

]m1
D5sn1S 1

R1
1

1

R2
D , ~28!

whereR1 andR2 are the main curvature radii of the interfac
at the pointr1 . Then the formula~26! can be presented as

m2„T,P2~r1!…1w2~r1!5m1„T,P1~r1!…1w1~r 1!, ~29!

whereP1(r1) and P2(r1) are substance pressures at the
terface. Their difference causes surface effects and equa

P1~r1!2P2~r1!5sS 1

R1
1

1

R2
D . ~30!

The formula~29! is the condition of the phase equilibrium i
the presence of the external field. If the external field is
sent, then Eq.~29! turns into the usual equality of the pha
chemical potentials with different pressures due to the c
vature of the interface. In the presence of the field,
chemical potentials of the substance phases do not coin
at the phase boundary. The difference of these potentials
be written as

Dm~r1!5w1~r1!2w2~r1!52E
0

r1
~n1f12n2f2!•du.

~31!

Generally the difference~31! is not equal to zero for an ar
bitrary field. It is equal to zero if the mass densities of t
forces acting upon the phases are equal, i.e.,n1f15n2f2 . The
last equality is valid for a gravitational field. Therefore th
gravitational field does not influence the phase equilibri
and we have the ordinary condition of phase equilibriu
when the substance chemical potentials of the phases c
cide at the phase boundary. At the same time, this differe
may not be equal to zero either in an electrical field or in
magnetic field. In this case the field-induced shift of pha
equilibrium parameters will occur.

The calculation ofDm offers a special problem. It is con
venient to present the substance chemical potential dif
ence at the phase boundary as an equivalent change of p
1 chemical potential

E
0

r1
~n1f12n2f2!•du5E

P1

P11P̃
n1dP. ~32!

This formula is the definition of the parameterP̃. Using Eq.
~32! we can rewrite the phase equilibrium condition~29! as

m1~T,P1P!5m2~T,P!5m I , ~33!

whereP5P12P1P̃.
So we can see that formally the field influence sho

itself as an additional displacement of phase 1 pressure
the value ofP̃. We emphasize that this is nothing more th
a convenient form of the general condition~29! presentation.
Moreover, the equality~33! corresponds to the choice of th
phase 2 potential whenw250 at the phase boundary. Th
difference of the chemical potentials of phases at the ph
-
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boundary is determined by Eq.~29!. In this case the value o
the phase 2 chemical potential at the phase boundary c
cides with the value of the full chemical potential of th
system. The latter is determined with the precision of
arbitrary constant.

Thus there is a shift of phase equilibrium parameters
to the presence of an external field described by Eqs.~29!–
~33!. ~We emphasize that the free energy functional is u
in @4# for the calculation of the work of new phase nucle
formation in the presence of a magnetic field. However,
magnetic field energy change connected with the nucl
formation for a particular size is only minimized. Such a
approach does not give the necessary equilibrium condit
for the current-carrying conductor in its own magnetic fie
and leads to a number of erroneous conclusions.! There is a
need to add Eqs.~28!–~32! to equations of state at the pha
boundary and at the point phase 1 with the pressureP1P.

P1P5 f ~T,n1!, P5 f ~T,n2!, ~34!

wheren1 is the specific volume of phase 1 at the points w
pressureP1P. The system of equations~28!–~33! is deter-
mined by the substance densities at the phase boundary
parameterP is given.

We see from Eq.~33! that the field-induced phase equ
librium leads to the equality of phase chemical potenti
with different pressures. Let us investigate the possibility
such equilibrium when parameterP is given. Differentiating
equality ~33!, we obtain

]n2

]n1
5

n1]P1 /]n1

n2]P2 /]n2
. ~35!

The value of the derivative]n2 /]n1 is equal to zero or in-
finity at the spinodal points where]P/]n50. These values
are not compatible with the mass conservation law. A
result, a two-phase system in the presence of an external
becomes unstable at the spinodal points and a field-indu
phase transition may occur.

Now let us use the van der Waals equation to researc
field-induced matter state in greater detail.

V. INVESTIGATION OF PHASE EQUILIBRIUM ON BASE
VAN DER WAALS EQUATION

The field-induced phase equilibrium problem allows ex
solution if the van der Waals equation is used. In reduc
units, this equation is

P85
8T8

3

1

n821/3
2

3

n82 . ~36!

In Eq. ~35! the values areP85P/Pc , T85T/Tc , n8
5n/nc , wherePc , Tc , nc are critical pressure, temperatur
and specific volume. Below the primes will be omitted. U
ing Eq. ~34!, the temperature can be expressed as a func
of the phase densities

T5
1

8
~r12r2!~32r1!~32r2!F12

P

3~r1
22r2

2!G . ~37!
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3964 56V. S. VOROB’EV AND S. P. MALYSHENKO
The pressure can be expressed as a function of the p
densities too. Then we obtain

P1P5r2r1~32r21r1!2
P~32r2!r1

3~r12r2!
, ~38!

P5r2r1~32r22r1!2
P~32r1!r2

3~r12r2!
. ~39!

The system~37!–~39! is determined by the temperature a
pressures via the phase densities. The valueP is the param-
eter. In particular, ifP50 and all densities are equal t
unity, then the system~36!–~38! gives correct values of the
critical temperatureT51 and pressureP51. Equation~33!
will be one more equation to add to the system~37!–~39!. To
obtain it, we write the free energy in van der Waals a
proach,

f 5
8T

3
lnS w~T!

n21/3D2
3

n
, ~40!

wherew(T) is a function of temperature. Using Eqs.~40!,
~36!, and the thermodynamical relationm5 f 1Pn, we can
write the phase equilibrium condition~33! in the form

8T

3
lnS n221

n121D2~r12r2!F62
8T

~32r1!~32r2!G50.

~41!

Equations~36!, ~37!, ~39!, and~40! permit us to find the
densities, temperature, and pressure when the parametP
has the same value.

First of all, we calculate the limit value of the paramet
P8 allowing the equality of the phase chemical potenti
with different pressures. Here one of the phases reache
spinodal state where (]P/]n)T50. Using Eq.~35! to calcu-
late this derivative we obtain that the temperature and p
sure at the spinodal line have to satisfy the equations

Psp5r2~322r!, Tsp5r~32r!2/4. ~42!

Let us haveP.0. Setting temperature~37! equal to the
temperature determined by the expression~41!, we find the
value

P85
3~r12r2!

32r1
~r1

21r1r213r223r122r2
2!. ~43!

Substituting expression~43! in Eq. ~37!, from Eq. ~41! we
obtain the equation containing only the densitiesr1 andr2 .
Solving this equation numerically and using the expressi
~37! and~43! we find the valuesT andP8. The dependence
P8 versus temperature is shown in Fig. 2. The valueP8
tends to zero when the temperature is close to the crit
point. This value grows when the temperature decreases

A similar procedure gives the following expression for t
limit negative valueP8 when the higher density phas
reaches its spinodal state:

P85
3~r12r2!

32r2
~2r1

213r22r2
22r1r223r1!. ~44!
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This dependence is also depicted in Fig. 2. The area betw
the limit positive and limit negative values ofP8 determines
the domain where the field-induced two-phase system m
exist as stable.

The phase density~Fig. 3! and phase pressure~Fig. 4!

FIG. 2. Dependencies of the limit pressuresP8 on reduced tem-
peratures obtained on the basis of the van der Waals equation

FIG. 3. Phase reduced density dependencies versus red
temperature with the different values of the parameterP: 1—P
50; 2—0.1; 3—0.5; 4—1; 5—(20.5); 6—(21). The points at
the limit temperature values are connected by short dotted line
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dependencies in Figs. 3 and 4 correspond to fixed value
parameterP.0 ~a! and P,0 ~b!. Curves 1 withP50
correspond to the absence of field. Curves 2–4 correspon
increasing positive values ofP, curves 5 and 6 to increasin
negative values ofP.

Two density curves are given for every value ofP. The
lower one corresponds to the lower density phase at
phase boundary with pressureP, the upper one to the highe
density phase at the point with pressureP1P. The curves
converge to curves for the case without field when the te
perature becomes lower. For the positive values ofP the
deviation of curves 2–4 from curve 1 takes place in
domain of higher densities as the temperature decreases
negative values deviation takes place in the domain of lo
densities. The deviates are the largest when the temper
reaches the value which corresponds to the liquid or ga
its spinodal state~see Figs. 3 and 4 for the spinodal lines!.
The field-induced phase equilibrium is impossible when
temperature exceeds this value. There is a limit tempera
for every value ofP when the curves break. This limit tem
perature decreases when the absolute values ofP grow. The
phase pressure curve corresponds to every value ofP in Fig.
4. As we can see from Fig. 4, the phase boundary press
converge to pressure without the field when the tempera
decreases. The curves break when the phase pressures
the values corresponding to liquid or gas spinodal state.

Equality of the chemical potentials~32! can be presented
as an equationF(T,P,r)50. This equation gives a surfac
in the plane of variablesT-P ~Fig. 5!. The top part of this
surface relates to the liquid state. The liquid state domai
limited by the liquid spinodal curve 2. The lower part of th
surface relates to the gas state. It is restricted by the
spinodal curve 3. The liquid and gas spinodals come toge
at the critical point~CP!. The part of the surface betwee
liquid 2 and gas 3 spinodals corresponds to unstable st
Projection of the liquid spinodal~curve CP2G2! on the gas
state surface restricts the domain of gas states which ca
in equilibrium with liquid in the presence of the field. Th
same is true of the gas spinodal projection on the liquid s
surface~curve CP2L1!. The plane curve 1 in this pictur
corresponds to the ordinary binodal without the field (P
50). In the presence of the field instead of the plane line

FIG. 4. Phase reduced pressure dependencies on reduced
perature with different values of the parameterP: 1—P50;
2—0.1; 3—0.5; 4—1; 5—(20.5); 6—(21).
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have the surface of field-induced two-phase states whic
restricted by the liquid and gas spinodals and their proj
tions.

It should be noted that the liquid and gas spinodal cur
form a critical line. This line is singular for substance the
modynamical functions just as an ordinary critical point
singular in the absence of the field@1#. The field-induced
two-phase system becomes unstable when one of the ph
reaches the critical line.

For every couple of valuesT-P we can find the liquidr1
and gasr2 densities belonging to the upper and lower pa
of the surface. These densities characterize the two-ph
state with given valuesT-P. The gas densityr2 belongs to
the point at the phase boundary with the pressureP. The
liquid densityr1 corresponds to the phase 1 state with t
pressureP1P. The fiveS-shaped curvesT5const are also
shown in this picture. Consider, for example, the isothe
with T50.5. The top part of this curveL1L2 is related to the
liquid state, the lower partG1G2 to the gas state; the state
lying between pointsL2 andG1 are unstable. The pointsL0
andG0 determine the values of phase densities without fi
(P50). The pointsL1 and G1 give the phase densities a
the greatest possible positive value of parameterP. The gas
stateG1 in this case lies on the gas spinodal 3. The pointsL2
andG2 correspond to the limit possible two-phase state w
the negative value of parameterP. The pointL2 lies on the
liquid spinodal in this case.

VI. PHASE EQUILIBRIUM IN LIQUID CURRENT-
CARRYING CONDUCTOR AND LIQUID DIELECTRIC IN

THE PRESENCE OF FIELD

Let us use the results obtained above to investigat
liquid-gas equilibrium for a liquid current-carrying condu
tor. We suggest that this conductor is surrounded by its o
vapor and is in equilibrium with it under certain field param

em-

FIG. 5. Surface of reduced densities for field-induced two-ph
states on reduced temperature and parameterP. The upper part of
this surface is related to liquid state, the lower one to the gas s
The space curves:~1! is the binodal in the absence of field (P
50), ~2! is the gas spinodal,~3! is the liquid spinodal. CP is the
critical point. Five curves withT5const are also shown. The par
of these curves shown as thin lines are related to unstable sta
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eters. Let the interface be a cylindrical surface. We neg
the effects induced by the curvature of the surface, so
phase pressures coincide at the interface. Besides, the
netic field created by the current has practically no influe
on the gas state. So the full chemical potential coincides w
the chemical potential of the gas phase.

As before, it is very convenient to usem(P) dependence
@Fig. 1~a!#. The straight linem I5const giving the full chemi-
cal potential value intersects the liquid branchSA at the
point A with pressureP1P corresponding to the zero fiel
point. The intersection pointC of this line with the gas
branchSE determines the gas state at the phase boun
with pressureP. The pointB corresponds to liquid state a
this pressure. The phases can coexist along a planar inte
at this pressure. The pointsB and C give the values of the
liquid chemical potentialm1 and gas chemical potentialm2
at the phase boundary with the pressureP and with m1
2m25Dm.

The state of the substance changes in the following w
The liquid phase state changes along theAB branch till the
valueP at the phase boundary. There is the chemical po
tial jump at the pointB to the value at the pointC of the gas
branch. The pointC corresponds to gas state~the pressure
changes due to the external field in the gas phase are n
gible!.

In the case being considered the liquid in the presenc
the field is in equilibrium with the supersaturated vap
~This conclusion differs from the one made by the authors
@4–6#. According to @4–6#, the thermodynamical stability
fails due to the attainment of the limit superheated state
the liquid phase. From what has been said, it might be
sumed that this is impossible for the compressive forc!
The latter now becomes stable. So we see that in the p
ence of the field, metastable states may be stable.

Notice that the pressure at the conductor axis beco
higher if the magnetic field strength increases. Therefore
value of the full chemical potentialm l increases too. As is
seen from Fig. 1~a!, there is the same limit value of th
pressure and corresponding value of liquid chemical po
tial in which the equilibrium can still exist. This happen
when the pointC reaches gas spinodal state at the poinE
with the pressurePsp. The dotted lines in Fig. 1~a! corre-
spond to this situation. The equilibrium of the two-pha
system in a given geometry is made impossible. The tw
phase system has to change its state. In this case the tra
to a new state is accomplished by expansion of the condu
and formation of liquid drops. The final equilibrium sta
may be only a dispersion liquid-vapor system practica
without current. The chemical potential and pressure of
liquid in this state will be equal to the chemical potential a
pressure of the liquid at the phase boundary before de
Psp(T).

The chemical potentials of a drop and vapor which is
equilibrium with this drop are equal to each other and to
chemical potential of the liquid before decay. The press
of the vapor can be found from the relation

E
P1

Psp
n1dP5E

Ps

PG
n2dP. ~45!

From the expression~45! it follows that PG2Ps'(Psp
ct
e
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2Ps)n1 /n2!Ps . The inequality is valid far from the critica
point, wheren1 /n2!1. As a resultPG;Ps . The pressure
difference between the liquid and the gas is compensate
the surface effects. The typical drop size can be found fr
the Laplace relation

a5
2s~T!

Psp2PG
, ~46!

where s(T) is the surface tension. The drop numbers p
unit of cylinder length are given by the expression

N52pr 1
2Y 4p

3
a3. ~47!

The chemical potential difference between liquid and g
existing before transition is partially expended on the dr
formation and partially converted into kinetic energy of t
drops. Writing the corresponding energy balance, we ob

2pr l
2Dm5NS 4pr 2s1

4pr1

3
r 3

U2

2 D , ~48!

whereU is the expansion velocity. Knowing thatDm;P/r1
and using expressions~46!, ~47!, we obtain from the expres
sion ~48! that

U5A2@P23~Psp2Ps!/2#/r1. ~49!

The estimation on the basis of the van der Waals equa
shows thatPc2Ps;0.2Pc at the range of temperature
;(0.5– 0.6)Tc . Using this condition, we obtain that the va
ues for the pressure drop areP;Pc;8000 atm ands
;100 dyn/cm. These values are typical for such liquid m
als as Al or Cu. From Eq.~46! we obtain that the typical drop
size is;1027– 1026 cm, and from Eq.~48! we have that the
typical velocity of expansion is equal to hundreds of met
per second. Orders of magnitude of these values corresp
with those of experimental data@7,9#.

Consider now a long cylindrical capacitor. This capaci
is filled with a dielectric liquid. As is seen from Fig. 1~b!, a
dielectric liquid in an electrical field cannot be in equilibriu
with its own vapor along a planar interface due to the ex
ing pressure drop between the pointsA and C. The phase
coexistence is possible only when vapor bubbles are in
the liquid. Let us assume that the vapor nucleus is forme
a distancer from the axis. The electrical field has no influ
ence on the gas state. Assume thatr @a, where a is the
characteristic transversal size of a nucleus. The minimum
the full thermodynamic potential of the two-phase syst
with m5const andT5const determines a minimal value fo
vapor bubble work formation. In long dielectric the min
mum of the absolute value of the bubble formation work
attained for a thin long bubble of lengthb@a oriented in the
direction of the dielectric axis. Thus the bubble formati
work per unit of length of the capacitorW is given by the
expression

W52psa2pa2@PS2P~r !#, ~50!

wherePS is gas pressure at the zero field pointS. The criti-
cal dimension of a nucleus can be determined from the c
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dition ]W/]a50. The latter condition and formula~50! yield
the equilibrium size of the bubble and the value of its mi
mal formation work, the latter being of the form

W5p
s2

~PS2P!
. ~51!

This work will be minimal when the differencePS2P is
maximal, i.e., at the surface of the inner electrode. Us
expressions~22! and~23! we obtain the following expressio
for the minimal nucleus formation work in the presence of
electrical field:

W5
8p2s2

E2~r 0!«~«21!
. ~52!

The size of the bubbles can be found from the relation

a5
8p2s

E2~r 0!«~«21!
. ~53!

From Eqs.~51! and ~52! it follows that the work of the
nucleus formation is minimal where the externally appli
electric field is maximal. This is the general conclusion
dependent of a system geometry. So we obtain the expl
tion of the mechanism of vapor bubble formation near
electrode.

Let us compare the values of bubble size which follo
from the expression~52! with ones from@12# obtained as a
result of experimental investigation of prebreakdown p
nomena in nitrobenzol. Using the values«536.4 ands
543.9 dyn/cm for nitrobenzol and taking from@12# the char-
acteristic value of electrical field strength near the electr
E(r 0)553105 V/cm, we obtain from Eq.~52! that the typi-
cal bubble size is equal toa;1025 cm. This value correlates
well with the data from@12#.

It should be pointed out that the reasons for the violat
of phase uniformity under pulse voltage and mechanism
vapor bubble appearance up to now were obscure. It is
known that mechanisms of vapor bubble formation in diel
tric liquid were the ‘‘bottleneck’’ in prebreakdown phenom
ena. There were a few previously suggested different hyp
eses associated with the explanation of bubble forma
-
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near an electrode@11,12#. Now we can see that this effect i
a result of the phase equilibrium shift due to the presence
an electrical field.

VII. CONCLUSION

The preceding analysis demonstrates that the condit
of phase equilibrium substantially change when exter
nonuniform fields lead to appearance of mass forces ha
different effect on the phases. A field-induced domain
stable states of a substance is extended up to correspon
spinodal curves. The domain of temperatures, pressures
phase densities, corresponding to thermodynamic equ
rium of the two-phase system in the presence of a field
extended too. There is a loss of stability of the two-pha
system when one of the phases reaches its spinodal sta
configuration phase transition of the two-phase system in
dispersion state occurs in this case. The phase spinodal
form the critical line of these transitions. The critical poi
belongs to the line in the absence of the field.

We also demonstrated the occurrence of several pec
effects which accompany phase transitions in the presenc
an external nonuniform field. The first of them is connect
with the formation of the domain of instability of bot
phases in a current-carrying conductor leading to sharp
pansion of the conductor and its transformation into a fi
dispersion mixture of liquid drops in vapor. This mechanis
can be the reason for electrical explosion of conductors
the so-called fast regimes@7–9#.

The second effect occurs in a liquid dielectric penetra
by an electrical field. The appearance of vapor bubbles in
domain of the high value of this field is caused by the chan
of the phase equilibrium conditions due to the field.

Many of the aspects of these problems have direct si
larity to the problem of phase transition accompanied
melting processes, chemical reaction, and polymerization
the presence of the external field.
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